الأحد، 2 سبتمبر 2012

خواص المتجهات Properties of Vectors.

جمع المتجهات Vector addition
يمكن جمع المتجهات التي تعبر عن كميات فيزيائية متشابهة مثل جمع متجهيين للقوة، ولكن لا يمكن ان نجمع متجه قوة مع متجة سرعة.
لجمع متجه A مع متجه B تكون المحصلة المتجه R
(R= A + B---> (1.5
هذه القاعده بشكل عام : ولكنها تختلف تباعاً لموقع المتجهين المراد جمعهما بالنسبة لبعضهما .
1) أول حالة : عندما يكونان متوازيين :
. Two vectors, A and B are equal if they have the same magnitude and direction, regardless of whether they have the same initial points, as shown in
.
إذاً في هذه الحالة المقدار : R=|A|×|B
وإتجاهها نفس إتجاه A&B

Panel 2 #2 A vector having the same magnitude as A but in the opposite direction to A is denoted by -A , as
.
هنا المحصلة تساوي الصفر . لأنهما متساويين في المقدار .
متعاكسين في الإتجاه .
R=A-B
B= -A:.
R=A-A=0<=


2) الحالة الخاصة الثانية لجمع المتجهات : هي عندما تكون متتابعة .
.
The sum of two vectors, A and B, is a vector C, which is obtained by placing the initial point of B on the final point of A, and then drawing a line from the initial point of A to the final point of B
A+B = C
والـمتجهه C هنا( المحصلة ) هو طول الضلع الذي يغلق الشكل .
ويكون إتجاهه بإتجاه رأس السهم للمتجه المجاور .
الذي أغلقنا المضلع عنده .
3)الحالة الثالثة لجمع المتجهات : عندما يكونان متقابليّ بالرأس .

Vector subtraction is defined in the following way. The difference of two vectors, A - B , is a vector C that is,
C=A - B
(or C = A + (-B .
Thus vector subtraction can be represented as a vector addition.
يعني : المحصلة هنا تساوي حاصل طرح المتجهين أو حاصل جمعهما مع مراعاة الإشارة لإتجاهيهما .
..........
لاحظوا أن جميع المتجهات لها خاصية التبديل.
(A + B = B + A---> (1.6

ليست هناك تعليقات:

إرسال تعليق